

Math 565: Functional Analysis

Lecture 9

Real Riesz representation theorem. For an lcH space X , $C_0(X, \mathbb{R})^* \cong RM_{\mathbb{R}}(X)$, more precisely, the map $p \mapsto I_p : RM_{\mathbb{R}}(X) \rightarrow C_0(X, \mathbb{R})^*$ is an isometric isomorphism.

We prove this by splitting bdd linear functionals into differences of bdd positive linear functionals. A linear functional $I : C_0(X, \mathbb{C}) \rightarrow \mathbb{C}$ is called **positive** if $I(f) \geq 0$ whenever $f \geq 0$, for all $f \in C_0(X, \mathbb{C})$; same with \mathbb{R} instead of \mathbb{C} .

Jordan decomposition for linear functionals. Let X be any top. space. Every $I \in C_0(X, \mathbb{R})^*$ decomposes into a difference $I = I_+ - I_-$ of positive $I_+, I_- \in C_0(X, \mathbb{R})^*$.

Proof. For all nonnegative $f \in C_0(X, \mathbb{R})$, we define

$$I_+(f) := \sup \{ I(g) : 0 \leq g \leq f \}.$$

- (i) Note that $I_+(f) \geq 0$ because we can take $g := 0$, so $I(g) = 0$.
- (ii) Because for each $g \in C_0(X, \mathbb{R})$ with $0 \leq g \leq f$, we have $|I(g)| \leq \|I\| \cdot \|g\|_u \leq \|I\| \cdot \|f\|_u$, we have $|I_+(f)| \leq \|I\| \|f\|_u$ so $\|I_+\| \leq \|I\|$.
- (iii) For $c \geq 0$, $I_+(cf) = \sup_{0 \leq g \leq f} I(cg) = c \cdot \sup_g I(g) = c \cdot I_+(f)$.
- (iv) $I_+(f_1 + f_2) = I_+(f_1) + I_+(f_2)$.

Proof. $I_+(f_1 + f_2) \geq I_+(f_1) + I_+(f_2)$ because if $g_i \leq f_i$ then $g_1 + g_2 \leq f_1 + f_2$. Conversely, if $0 \leq g \leq f_1 + f_2$ then take $g_1 := \min\{g, f_1\} \leq g$, so $g_2 = g - g_1 \geq 0$, and get $0 \leq g_i \leq f_i$. If $g_1(x) = g(x)$ then $g_2(x) = g(x) - g_1(x) = 0 \leq f_2(x)$; and if $g_1(x) = f_1(x)$ then $g_2(x) = g(x) - f_1(x) \leq f_1(x) + f_2(x) - f_1(x) = f_2(x)$. Hence $I_+(f_1 + f_2) \geq I(g_1) + I(g_2) = I(g)$, so $I_+(f_1 + f_2) \geq \sup_g I(g) = I_+(f_1 + f_2)$. iv

For $f \in C_0(X, \mathbb{R})$, let $f = f_+ - f_-$ be the unique decoupl. into $f_+, f_- \geq 0$, and define

$$I_+(f) := I_+(f_+) - I_+(f_-).$$

By (i), $I_+(f) \geq 0$ if $f \geq 0$, and by (iv) I_+ is additive. By (iii) for $c > 0$, we have $I_+(cf) = I_+(cf_+) - I_+(cf_-) = c(I_+(f) - I_+(f_-)) = cI_+(f)$, and

$$I_+(-f) = I_+(-f_+ + f_-) = I_+(f_- - f_+) = I_+(f_-) - I_+(f_+) = - (I_+(f_+) - I_+(f_-)) = -I_+(f),$$

so I_+ is a positive linear functional. $I_+(f_+), I_+(f_-) \geq 0$ by (ii)

Furthermore, $|I_+(f)| = |I_+(f_+) - I_+(f_-)| \leq \max \{I_+(f_+), I_-(f_-)\} \leq \|I\| \cdot \max \{\|f_+\|_u, \|f_-\|_u\}$

$$= \|I\| \cdot \|f\|, \text{ so } \|I_+\| \leq \|I\|.$$

Now set $I_- := I_+ - I$, so $I_- \in C_c(X, \mathbb{R})^*$ and we show that I_- is positive. For $f \geq 0$,

$$I_-(f) = I_+(f) - I(f) = \sup_{0 \leq g \leq f} I(g) - I(f) = \sup_{0 \leq g \leq f} (I(g) - I(f)) = \sup_{0 \leq g \leq f} I(g - f) \geq I(f - f) = 0.$$
QED

Thus it now suffices to prove that every odd positive linear functional on $C_c(X, \mathbb{R})$ comes from an unsigned Radon measure on X . We proving a slightly more general:

Positive Reisz representation theorem. Let X be an lctH space. For every positive linear functional I on $C_c(X)$, there is a unique (unsigned) Radon measure μ on X with $I = I_\mu$. Moreover, for all open $U \subseteq X$ and compact $K \subseteq X$, μ satisfies:

$$(\star U) \quad \mu(U) = \sup \{ I(f) : \underbrace{0 \leq f \leq 1 \text{ and } \text{supp } f \subseteq U}_{f \in C_c(X)} \},$$

$$(\star K) \quad \mu(K) = \inf \{ I(f) : f \geq \mathbb{1}_K, f \in C_c(X) \}.$$

Remark. Every odd linear functional on $C_c(X)$ extends uniquely to a odd lin. functional on $\overline{C_c(X)} = C_c(X)$ by the HW question, so this statement with $C_c(X)$ is more general than it would be with $C_c(X)$. In fact, it is strictly more general as the following example shows.

Example. Let $X := \mathbb{R}$ and let $I(f) := \int f \, dx$, the Riemann integral of f . This doesn't extend to a positive linear functional on $C_c(\mathbb{R}, \mathbb{R})$ because then $I(f) = \infty$ for $f(x) := \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ \max(x, 0) & \text{if } x \leq 0 \end{cases} \in C_c(\mathbb{R}, \mathbb{R})$ because $I(f) \geq I(g_n) \geq n$ for some uniform approximation $(g_n) \subseteq C_c(\mathbb{R}, \mathbb{R})$.

Note that $I = I_\lambda$ where λ is Lebesgue measure, so the positive Reisz representation says that one

can define Lebesgue measure solely from the knowledge of Riemann integral

Proof of uniqueness. Suppose that $I = I_\mu$ for some Radon measure μ on X . By outer regularity of μ , it suffices to show that I determines the values of μ on open sets. Thus, it's enough to show that $(*U)$ holds. To this end, note that if $f \preceq U$ then $I(f) = I_\mu(f) \leq I_\mu(\mathbf{1}_U) = \mu(U)$ so $\mu(U) \geq I(f)$. Conversely, the tightness of μ on U gives for each $\varepsilon > 0$ a compact set $K \subseteq U$ with $\mu(K) \approx \mu(U)$ so by Urysohn we get $\mathbf{1}_K \leq f \leq U$, hence $\mu(K) = I_\mu(\mathbf{1}_K) \leq I_\mu(f) \leq \mu(U)$, so $I_\mu(f) = I(f) \approx \mu(U)$.

Proof of existence. For each open $U \subseteq X$, we define $\mu(U)$ by $(*U)$, i.e.

$$\mu(U) := \sup \{ I(f) : f \preceq U, f \in C_c(X) \}.$$

We then define an "outer" measure $\tilde{\mu}$ on all subsets $B \subseteq X$ by

$$\tilde{\mu}(B) := \inf \{ \mu(U) : U \supseteq B \text{ open} \}.$$

Observe that for open $U \subseteq X$, $\tilde{\mu}(U) = \mu(U)$.

Claim 1 (key point). $\tilde{\mu}$ is c.t.bly subadditive, i.e. if $B = \bigcup B_n$ then $\tilde{\mu}(B) \leq \sum \tilde{\mu}(B_n)$.

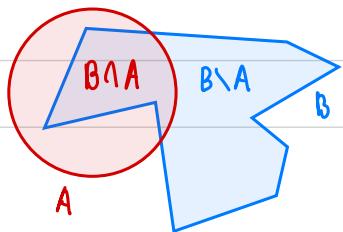
Proof. It suffices to show c.t.bly subadditivity for open $U = \bigcup_{n \in \mathbb{N}} U_n$, U_n open since for arbit.

carry $B = \bigcup B_n$, let $U \supseteq B$ be open and $U_n \supseteq B_n$ be open and such that $\mu(U_n) \leq \mu(B_n) + \varepsilon \cdot 2^{-(n+1)}$, and also WLOG $U_n \subseteq U$, so suppose WLOG, $U = \bigcup U_n$. Then

$$\tilde{\mu}(B) \leq \mu(U) \leq \sum_{n \in \mathbb{N}} \mu(U_n) \leq \sum_{n \in \mathbb{N}} \tilde{\mu}(B_n) + \sum_{n \in \mathbb{N}} \varepsilon \cdot 2^{-(n+1)} = \sum_{n \in \mathbb{N}} \tilde{\mu}(B_n) + \varepsilon.$$

Now for $U = \bigcup_{n \in \mathbb{N}} U_n$ all open, let $f \preceq U$ and $K := \text{supp } f$. So $\{U_n\}_{n \in \mathbb{N}}$ is an open cover of K , hence by compactness, there is a finite subcover $\{U_n\}_{n \in N}$. Let $(f_n)_{n \in N} \subseteq C_c(X)$ be a partition of unity subordinate to $\{U_n\}_{n \in N}$, i.e. $f_n \leq \mathbf{1}_{U_n}$ for all $n \in N$ and $\sum_{n \in N} f_n \geq \mathbf{1}_K$. By positivity of I , I is monotone, so $f \leq \mathbf{1}_K \leq \sum_{n \in N} f_n$ implies $I(f) \leq \sum_{n \in N} I(f_n) \leq \sum_{n \in N} \mu(U_n) \leq \sum_{n \in \mathbb{N}} \mu(U_n)$, hence $\mu(U) \leq \sum_{n \in \mathbb{N}} \mu(U_n)$.

Recall that we call a set $A \subseteq X$ $\tilde{\mu}$ -conservative (or Carathéodory measurable) if for all $B \subseteq X$, $\tilde{\mu}(A) = \tilde{\mu}(B \cap A) + \tilde{\mu}(B \setminus A)$.



The proof of Carathéodory's extension theorem shows that if $\tilde{\mu}$ is ctblly subadditive and $\tilde{\mu}(\emptyset) = 0$, then $\tilde{\mu}$ -consecutive sets form a σ -algebra \mathcal{G} and $\tilde{\mu}$ is a (ctblly additive) measure on \mathcal{G} .

Claim. Open sets are $\tilde{\mu}$ -consecutive, hence $\mathcal{G} \supseteq \mathcal{B}(X)$ so $\tilde{\mu}$ is a Borel measure on X .

Proof. Let $B \subseteq X$ and $U \subseteq X$ be open. Need to show $\tilde{\mu}(B) \geq \tilde{\mu}(B \cap U) + \tilde{\mu}(B \setminus U)$ because we already know \leq by subadditivity. Let $V \supseteq B$ be open such that $\tilde{\mu}(B) \approx \mu(V)$, so it's enough to show $\mu(V) \geq \mu(V \cap U) + \tilde{\mu}(V \setminus U)$ since $\mu(V \cap U) + \tilde{\mu}(V \setminus U) \geq \tilde{\mu}(B \cap U) + \tilde{\mu}(B \setminus U)$.

Let $f \in V \setminus U$ with $\mu(V \cap U) \approx \mathbb{I}(f)$. Then putting $K := \text{supp } f$, $V \setminus K$ is open and $\mu(V \setminus K) \geq \tilde{\mu}(V \setminus U)$. Let $g \in V \setminus K$ with $\mu(V \setminus K) \approx \mathbb{I}(g)$, and $f+g \in V$, hence $\mu(V) \geq \mathbb{I}(f+g) = \mathbb{I}(f) + \mathbb{I}(g) \approx \mu(V \cap U) + \mu(V \setminus K) \geq \mu(V \cap U) + \tilde{\mu}(V \setminus U)$. \square

Denote $\mu := \tilde{\mu}|_{\mathcal{B}(X)}$, so μ is a Borel measure. By definition, μ satisfies (\ast_k) , and is outer regular by the definition of $\tilde{\mu}$. Furthermore, (\dagger_k) holds by approximating a given compact $K \subseteq X$ with an open $U \supseteq K$ and using Urysohn to get an $f \in C_c(X)$ with $1_K \leq f \leq 1_U$. (\ast_k) and (\dagger_k) together also imply that μ is tight and finite on compact sets, hence a Radon measure.

It remains to prove that $\mathbb{I} = \mathbb{I}_\mu$, for which it is enough to show $\mathbb{I}(f) = \mathbb{I}_\mu(f)$ for all $f \in C_c(X, [0, 1])$ since this set linearly spans $C_c(X, \mathbb{C})$. One does this by taking a layered cake decomposition of f (similar to the proof that every measurable $g \geq 0$ is an increasing pointwise limit of simple functions), $f = \sum_{i \in \mathbb{N}} f_i$, and showing that both $\mathbb{I}(f_i)$ and $\mathbb{I}_\mu(f_i)$ are tightly sandwiched between the measures of the i th and $(i-1)$ th layers, hence they must coincide since the error is arbitrarily small.

QED